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Abstract
In this paper, we present an approach for robot
learning of social affordance from human activity
videos. We consider the problem in the context
of human-robot interaction: Our approach learns
structural representations of human-human (and
human-object-human) interactions, describing how
body-parts of each agent move with respect to each
other and what spatial relations they should main-
tain to complete each sub-event (i.e., sub-goal).
This enables the robot to infer its own movement
in reaction to the human body motion, allowing it
to naturally replicate such interactions.
We introduce the representation of social affor-
dance and propose a generative model for its
weakly supervised learning from human demon-
stration videos. Our approach discovers criti-
cal steps (i.e., latent sub-events) in an interac-
tion and the typical motion associated with them,
learning what body-parts should be involved and
how. The experimental results demonstrate that our
Markov Chain Monte Carlo (MCMC) based learn-
ing algorithm automatically discovers semantically
meaningful social affordance from RGB-D videos,
which allows us to generate appropriate full body
motion for an agent.

1 Introduction
The concept of “affordance learning” is receiving an in-
creasing amount of attention from robotics, computer vi-
sion, and human-robot interaction researchers. The term af-
fordance was originally defined as “action possibilities” of
things (e.g., objects, environments, and other agents) by [Gib-
son, 1979], and it has attracted researchers to study compu-
tational modeling of such concept [Montesano et al., 2008;
Gupta et al., 2011; Kjellström et al., 2011; Moldovan et al.,
2012; Jiang et al., 2013; Zhu et al., 2014; Koppula and Sax-
ena, 2014; Pieropan et al., 2014; 2015; Sheng et al., 2015;
Zhu et al., 2015]. The idea behind modern affordance learn-
ing research is to enable robot learning of “what activities are
possible” (i.e., semantic-level affordances) and “where/how
it can execute such activities” (i.e., spatial-level and motion-
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Figure 1: Visualization of our social affordance. The green (right)
person is considered as our agent (e.g., a robot), and we illustrate
(1) what sub-event the agent needs to do given the current status and
(2) how it should move in reaction to the red (left) person’s body-
parts to execute such sub-event. The black skeleton indicates the
current frame estimation, and greens are for future estimates. The
right figure shows a hierarchical activity affordance representation,
where affordance of each sub-event is described as the motion of
body joints. We also visualize the learned affordable joints with
circles, and their grouping is denoted by the colors. Note that the
grouping varies in different sub-events.

level affordances) from human examples. Such ability not
only enables robot planning of possible actions, but also al-
lows robots to replicate complicated human activities. Based
on training videos of humans performing activities, the robot
will infer when particular sub-events can be executed and how
it should move its own body-parts in order to do so.

So far, most previous works on robot affordance learning
have only focused on the scenario of a single robot (or a sin-
gle human) manipulating an object (e.g., [Koppula and Sax-
ena, 2014]). These systems assumed that affordance solely
depends on the spatial location of the object, its trajectory,
and the intended action of the robot. Consequently affordance
was defined as a unary function in the sense that there is only
one agent (i.e., the robot) involved.

However, in order for a robot to perform collaborative tasks
and interact with humans, computing single-robot object ma-
nipulation affordances based on object recognition is insuffi-
cient. In these human-robot interaction scenarios, there are
multiple agents (humans and robots) in the scene and they
interact and react. Thus, the robot must (1) represent its af-
fordance as “interactions” between body joints of multiple
agents, and (2) learn to compute such hierarchical affordances
based on its status. Its affordance should become activated



only when the action makes sense in the social context. For
instance, the fact that human’s hand is a location of affor-
dance doesn’t mean that the robot can grab it whenever it
feels like. The robot should consider grabbing the human
hand only when the person is interested in performing hand-
shake activity with it.

Therefore, in this paper, we introduce the new concept of
social affordances, and present an approach to learn them
from human videos. We formulate the problem as the learn-
ing of structural representations of social activities describing
how the agents and their body-parts move. Such representa-
tion must contain a sufficient amount of information to ex-
ecute the activity (e.g., how should it be decomposed? what
body-parts are important? how should the body-parts move?),
allowing its social affordance at each time frame to be com-
puted by inferring the status of the activity and by comput-
ing the most appropriate motion to make the overall activity
successful (Figure 1). Since we consider the problem particu-
larly in the context of human-robot interaction, activity repre-
sentation involving multiple agents with multiple affordable
body-parts must be learned, and the inference on a robot’s
affordance should be made by treating it as one of the agents.

Our problem is challenging for the following reasons: (i)
human skeletons estimated from RGB-D videos are noisy due
to occlusion, making the learning difficult; (ii) human interac-
tions have much more complex temporal dynamics than sim-
ple actions; and (iii) our affordance learning is based on a
small training set with only weak supervision.

For the learning, we propose a Markov Chain Monte Carlo
(MCMC) based algorithm to iteratively discover latent sub-
events, important joints, and their functional grouping from
noisy and limited training data. In particular, we design two
loops in the learning algorithm, where the outer loop uses a
Metropolis-Hasting algorithm to propose temporal parsing of
sub-events for each interaction instance (i.e., sub-event learn-
ing), and the inner loop selects and groups joints within each
type of sub-event through a modified Chinese Restaurant Pro-
cess (CRP). Based on the discovered latent sub-events and
affordable joints, we learn both spatial and motion poten-
tials for grouped affordable joints in each sub-event. For the
motion synthesis, we apply the learned social affordance to
unseen scenarios, where one agent is assumed to be an ob-
served human, and the other agent is assumed to be the robot
that we control to interact with the observed agent (an ob-
ject will be treated as part of the observation if it is also
involved). To evaluate our approach, we collected a new
RGB-D video dataset including 3 human-human interactions
and 2 human-object-human interactions. Note that there are
no human-object-human interactions in the existing RGB-D
video datasets.

To our knowledge, this is the first work to study robot
learning of affordances for social activities. Our work dif-
fers from the previous robot affordance learning works in the
aspect that it (1) considers activities of multiple agents, (2)
decomposes activities into multiple sub-events/sub-goals and
learns their affordances (i.e., hierarchical affordance) that are
grounded to the skeleton sequences, and (3) learns both spa-
tial and motion affordances of multiple body-parts involved
in interactions.

1.1 Related works
Although there are previous studies on vision-based hierar-
chical activity recognition [Gupta et al., 2009; Ryoo and Ag-
garwal, 2011; Lan et al., 2012; Amer et al., 2012; Pei et al.,
2013; Choi and Savarese, 2014; Shu et al., 2015] and human-
human interaction recognition [Ryoo, 2011; Lan et al., 2014;
Huang and Kitani, 2014], research on affordances of high-
level activities has been very limited. For the robotic mo-
tion planning and object manipulation, [Lee et al., 2013;
Yang et al., 2015; Wu et al., 2015] presented symbolic rep-
resentation learning methods for single agent activities, but
low-level joint trajectories were not explicitly modeled in
those works. In computer graphics, some motion synthesis
approaches have been proposed [Li et al., 2002; Taylor et
al., 2006; Wang et al., 2008; Fragkiadaki et al., 2015], but
they only learn single agent motion based on highly accurate
skeleton inputs from motion capture systems.

In contrast, in this paper, we are studying affordances of
dynamic agents with multiple body parts, including human-
human interactions (e.g., shaking hands) as well as human-
object-human interactions (e.g., object throw-catch). Its im-
portance was also pointed out in [Gibson, 1979] as “the rich-
est and most elaborate affordances”, and we are exploring
such concept for the first time for robots. We specifically
denote such affordances as social affordances, and present an
approach to learn them from human activity videos.

2 Representation and Formulation
We propose a graphical model to represent the social affor-
dance in a hierarchical structure, which is grounded to skele-
ton sequences (Figure 2a). Our representation not only de-
scribes what human skeletons (i.e., body-joint locations) are
likely to be observed when two persons are performing in-
teractions, but also indicates how each interaction need to be
decomposed in terms of sub-events/sub-goals and how agents
should perform such sub-events in terms of joint motion.

Skeleton sequences. An interaction instance is repre-
sented by the skeleton sequences of the two agents. We use
J t = {J t1i}∪{J t2i} to denote the positions of the two agents’
joints at time t = 1, · · · , T . If an interaction involves an ob-
ject, then J t = {J t1i}∪{J t2i}∪Ot, whereOt is the position of
the object at t. In practice, we select 5 most important joints –
base joint, left/right writs, and left/right ankles for the social
affordance, whose indexes are denoted as a set I. This rea-
sonable simplification helps us eliminate the noise introduced
by skeleton extraction from RGB-D videos while maintaining
the overall characteristics of each interaction.

Interaction label. A label c ∈ C is given to an interaction
to define its category, where C is a predefined dictionary.

Latent sub-events. One of our key intuitions is that a
complex interaction usually consists of several steps. In or-
der to enable the robots to mimic the human behavior, it is
necessary to discover these underlying steps as latent sub-
events. Here, a sub-event is defined as a sub-interval within
a complete interaction. There are two crucial components
in a sub-event: 1) the sub-goal to achieve at the end of the
sub-event, and 2) the motion patterns to follow in this sub-
event. Since it is difficult for humans to manually define and
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Figure 2: Our model. (a) Factor graph of an interaction. (b) Selec-
tion and grouping of joints for a sub-event.

annotate the sub-events, we only specify the number of la-
tent sub-events, i.e., |S|, and our learning method automat-
ically searches the optimal latent sub-event parsing for each
training instance. Here, a latent sub-event parsing of an in-
teraction instance whose length is T is represented by non-
overlapping intervals {Tk}k=1,··· ,K such that

∑
k |Tk| = T ,

where Tk = {t : t = τ1k , · · · , τ2k}, and the sub-event labels of
the corresponding intervals, i.e., {sk}k=1,··· ,K . Note that K,
the number of sub-events, may vary in different instances.

Joint selection and grouping. Another key intuition of
ours is to discover the affordable joints and their functional
groups in each latent sub-event. This means that 1) some
joints do not contribute much to accomplishing the latent sub-
event due to the lack of clear motion and/or specific spatial
relations among them, 2) and the rest joints are regarded as
affordable joints and are further clustered together to form
several functional groups, each of which has rigid spatial re-
lations among the grouped joints in the sub-events. Figure 2b
illustrates the selection and grouping of joints in a sub-event:
we first select affordable joints with a Bernoulli distribution
prior and remain the rest joints in a Null group; then we as-
sign each affordable joint to a functional group from a infinity
number of latent functional classes H = {h1, · · · , h∞}. The
grouping can be addressed by a Chinese Restaurant Process
(CRP), where a functional class is a table, and each afford-
able joint can be perceived as a customer to be seated at a
table. We introduce auxiliary variables Zs = {zsai : zsai ∈
H, a ∈ {1, 2}, i = 1, · · · , NJ} to indicate the joint selection
and grouping in a sub-event s ∈ S of interaction c ∈ C. Jai
is assigned to hzsai

if zsai > 0; otherwise, Jai is assigned to
the Null group. Together Zc = {Zs}s∈S represents the joint
selection and grouping in a type of interaction, c.

Sub-goals and motion patterns. After grouping joints,
the sub-goal of a sub-event is defined by the spatial relations

(i.e., spatial potentials Ψg) among joints within the functional
groups, and movements of affordable joints are described
with the motion pattens (i.e., motion potentials Ψm). These
allow us to infer “how” each agent should move.

Parse graph. As shown in Figure 2a, an inter-
action instance is represented by a parse graph G =
〈c, S, {J t}t=1,··· ,T 〉. With the corresponding joint selection
and grouping Zc, we formalize the social affordance of an in-
teraction as 〈G,Zc〉. Note that Zc is fixed as common knowl-
edge while G depends on the observed instance.

2.1 Probabilistic Modeling
In this subsection, we provide how our approach models the
joint probability of each parse graph G and the joint se-
lection and grouping Z, allowing us to use it for both (i)
learning the structure and parameters of our representation
based on observed human skeletons (Sec. 3) and (ii) infer-
ring/synthesizing new skeleton sequences for the robot using
the learned model (Sec. 4).

For each interaction c, our social affordance representa-
tion has two major parts: 1) optimal body-joint selection and
grouping Zc, and 2) parse graph G for each observed inter-
action instance of c. Given Zc, the probability of G for an
instance is defined as

p(G|Zc) ∝
∏
k

p({J t}t∈Tk |Zsk , sk, c)︸ ︷︷ ︸
likelihood

· p(c)︸︷︷︸
interaction prior

·
K∏
k=2

p(sk|sk−1, c)︸ ︷︷ ︸
sub-event transition

·
K∏
k=1

p(sk|c)︸ ︷︷ ︸
sub-event prior

,

(1)
and the prior for joint selection and grouping is

p(Zc) =
∏
s∈S

p(Zs|c). (2)

Hence the joint probability is

p(G,Zc) = p(G|Zc)p(Zc). (3)

Likelihood. The likelihood term in (1) consists of i) spatial
potential Ψg({J t}t∈T , Zs, s) for the sub-goal in sub-event
s, and ii) motion potential Ψm({J t}t∈T , Zs, s) for motion
patterns of the affordable joints in s:

p({J t}t∈T |Zs, s, c)
= Ψg({J t}t∈T , Zs, s)Ψm({J t}t∈T , Zs, s). (4)

Spatial potential. We shift the affordable joints at the end
of each sub-event (i.e., τ2) in an interaction w.r.t. the mass
center of the assigned functional group. The shifted joint lo-
cations at t are denoted as J̃ tai. If there is only one joint in
a group, the reference point will be the base joint location of
the other agent at the moment instead. Then for each joint,
we have

ψg(J̃
t
ai) = ψxy(J̃ tai)ψz(J̃

t
ai)ψo(J̃ tai), (5)

where ψxy(J̃ tai) and ψz(J̃
t
ai) are Weibull distributions of the

horizontal and vertical distance between the joint and the ref-
erence point, and ψo(J̃ tai) is a von Mises distribution for the



Algorithm 1 Learning Algorithm

1: Input: {Jt}t=1,··· ,T of each instance with the same interaction
category c ∈ C

2: Obtain the atomic time intervals by K-means clustering
3: Initialize S of each instance, and Zc
4: repeat
5: Propose S′

6: repeat
7: Sample new Zc through Gibbs sampling
8: until Convergence
9: α = min{Q(S′→S)P∗(G′,Z′c)

Q(S→S′)P∗(G,Zc)
, 1}

10: u ∼ Unif [0, 1]
11: If u ≤ α, accept the proposal S′

12: until Convergence

angle between the two points. Note that the spatial potential
only accounts for affordable joints (i.e., zsai > 0). Thus

Ψg({J t}t∈T , Zs, s) =
∏
a,i

ψg(J̃
τ2

ai )1(z
s
ai>0). (6)

Motion potential. In a sub-event s of an interaction, we
compute the movement of a joint Jai by dai = Jτ

2

ai − Jτ
1

ai .
Similar to the spatial potential, this joint’s motion potential is

ψm({J tai}t∈T ) = ψm(dai) = ψxy(dai)ψz(dai)ψo(dai).
(7)

For an affordable joint, we use Weibull distributions for both
horizontal and vertical distances and a von Mises distribution
for the orientation. To encourage static joints to be assigned
to theNull group, we fit exponential distributions for the dis-
tances while keeping ψo(dai) the same if zsai = 0. Hence,

Ψm({J t}t∈T , Zs, s) =
∏
a,i

ψm({J tai}t∈Tk). (8)

Prior for interaction category and sub-event transition.
We assume uniform distribution for p(c) and compute the
transition frequency from training data for p(sk|sk−1, c).

Sub-event prior. The duration of a sub-event sk in inter-
action c is regularized by a log-normal distribution p(sk|c):

p(sk|c) = exp{−(ln |Tk| − µ)2/(2σ2)}/(|Tk|σ
√

2π). (9)

Joint selection and grouping prior. Combined with
Bernoulli distribution and the prior of CRP, the joint selection
and grouping prior for Zs in sub-event type s of interaction c
is defined as

p(Zs|c) =

∏
h(Mh − 1)!

M !︸ ︷︷ ︸
CRP prior

∏
ai

β1(z
s
ai>0)(1− β)(1−1(z

s
ai>0))︸ ︷︷ ︸

Bernoulli prior for a joint

.

(10)
where Mh is the number of joints assigned to latent function
group h, and M is the total number of affordable joints, i.e.,
M =

∑
a,i 1(zsai > 0).

3 Learning
Given the skeleton sequences and their interaction labels, we
learn the model for each interaction category in isolation. As-
sume that we haveN training instances for interaction c, then

will have N parse graphs G = {Gn}n=1,...,N , and a common
Zc for this type of interaction. The objective of our learning
algorithm is to find the optimal G and Zc that maximize the
following joint probability:

p(G, Zc) = p(Zc)

N∏
n

p(Gn|Zc). (11)

Note that the size of latent sub-event dictionary, |S|, is speci-
fied for each interaction.

We propose a MCMC learning algorithm as Alg. 1, which
includes two optimization loops:

1 Metropolis-Hasting algorithm for sub-event parsing.
2 Given sub-event parsing, apply Gibbs sampling for

the optimization Z∗c = argmaxZc
p(G, Zc) =

argmaxZc
p(G|Zc)p(Zc).

The details of two loops are introduced as follows.

3.1 Outer Loop for Sub-Event Parsing
In the outer loop, we optimize the sub-event parsing by a
Metropolis-Hasting algorithm. We first parse each interaction
sequence into atomic time intervals using K-means clustering
of agents’ skeletons (we use 50 clusters). Then the sub-events
are formed by merging some of the atomic time intervals to-
gether. At each iteration, we propose a new sub-event parsing
S′ through one of the following dynamics:

Merging. In this dynamics, we merge two sub-events with
similar skeletons together and uniformly sample a new sub-
event label for it, which forms a new sub-event parsing S′.
For this, we first define the distance between two consecu-
tive sub-events by the mean joint distance between the aver-
age skeletons in these two sub-events, which is denoted by d.
Then the proposal distribution is Q(S → S′|d) ∝ e−λd/NL,
where λ is a constant number, and NL is number of possible
label assignments for the new sub-event. In practice, we set
λ = 1.

Splitting. We can also split a sub-event with multiple
atomic time intervals into two non-overlapping sub-events
with two new labels. Note that an atomic time interval is
not splittable. Similarly, we can compute the distance d be-
tween the average skeletons of these two new sub-events and
assume uniform distributions for the new labels. To encour-
age the split of two sub-events with very different skeletons,
we define the proposal distribution to be Q(S → S′|d) ∝
(1− e−λd)/NL, where NL is number of possible new labels.

Re-labeling. We relabel a uniformly sampled sub-event for
this dynamics, which gives the proposal distribution Q(S →
S′|d) = 1/(NL ·NS), where NL and NS are the numbers of
possible labels and current sub-events respectively.

In addition, the type of dynamics at each iteration is sam-
pled w.r.t. these three probabilities, q1 = 0.4, q2 = 0.4,
q3 = 0.2, for the above three types respectively.

The acceptance rate α is then defined as α =

min{Q(S′→S)P∗(G′,Z′c)
Q(S→S′)P∗(G,Zc)

, 1}, where P ∗(G, Zc) is the high-
est joint probability given current sub-event parsing S, i.e.,
P ∗(G, Zc) = maxZc

p(G, Zc) . Similarly, P ∗(G′, Z ′c) =
maxZ′c p(G′, Z ′c).



Algorithm 2 Motion Synthesis Algorithm
1: Give the interaction label c and the total length T ; set unit time

interval for simulation to be ∆T = 5; input the skeletons in the
first T0 = 10 frames, i.e., {Jt}t=1,··· ,T0 ; set τ ← T0

2: repeat
3: Input {J1i}tt=τ+1,··· ,τ+∆T

4: Extend {J2i}t to τ + ∆T by copying {J2i}τ temporarily
5: Infer S of {Jt}t=1,··· ,τ+∆T by DP; we assume that the last

sub-event, sK , is the current on-going sub-event type
6: Predict the ending time τ2

K of sK by sampling the complete
duration |T | w.r.t. the prior defined in (9), and generate N =
100 possible samples for the locations of the modeled five joints
in I, i.e., {Ĵn2i′}i′∈I,n=1,··· ,N ; note that the joints in the Null
group are assumed to be static in the current sub-event

7: Obtain the N corresponding joint locations at current time
τ+∆T , {Jn2i′}i′∈I,n=1,··· ,N , by interpolation based on {Ĵn2i′}

8: We choose the one that maximizes the likelihood, i.e.,
{J∗2i′}i′∈I , by computing motion and spatial potentials

9: Fit clustered full body skeletons from K-means to
{J∗2i′}i′∈I by rotating limbs, and obtain the closest one {J∗2i}

10: Jτ+∆T
2i ← J∗1i

11: Interpolate the skeletons from τ + 1 to τ + ∆T , and update
{J2i}tt=τ+1,··· ,τ+∆T

12: τ ← τ + ∆T
13: until τ ≥ T

3.2 Inner Loop for Joint Selection and Grouping
To obtain P ∗(G′, Z ′c) in the acceptance rate defined for the
outer loop given the proposed S′, we use Gibbs sampling to
iteratively updateZ ′c. At each iteration, we assign a joint from
I to a new group in each type of sub-event by

zsai ∼ p(G|Z ′c)p(zsai|Zs−ai). (12)

Based on (10), we have

p(zsai|Zs−ai) =


β

γ

M − 1 + γ
if zsai > 0,Mzsai

= 0

β
Mzsai

M − 1 + γ
if zsai > 0,Mzsai

> 0

1− β if zsai = 0
(13)

where the variables have the same meaning as in (10) and
β = 0.3 and γ = 1.0 are the parameters for our CRP.

4 Motion Synthesis
Our purpose for learning social affordance is to teach a robot
how to interact with a human. Hence, we design an online
simulation method to “synthesize” a skeleton sequence (i.e.,
{J2i}tt=1,··· ,T ) as a robot’s action sequence to interact with a
human (i.e., the first agent) and an object given the observed
skeleton sequence (i.e., {J1i}tt=1,··· ,T ), where T is the length
of the interaction. The idea is to make our approach automat-
ically “generate” an agent’s body joint motion based on the
learned social affordance and the other agents’ motion. Note
that the human skeleton sequence has not been seen in the
training data and we assume that the interaction category c is
given. The estimated object trajectory {Ot}t=1,··· ,T will also
be used if an object is involved. Since we define the social
affordance for a interaction instance as 〈G,Zc〉, the synthesis

Pull Up
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5 61 2 1 2
Hand Over a Cup

Throw and CatchHigh-FiveShake Hands

Figure 3: Visualization of some discovered sub-events and their joint
grouping in the five interactions, where the number denotes the sub-
event label and the joint colors show the groups. For throw and
catch and hand over a cup, an object is also displayed as an addi-
tional affordable joint. The shown frames are the last moments of
the corresponding sub-events, which depict the learned sub-goals.

is essentially to infer the joint locations for the second agent
(i.e., {J2i}t) by maximizing the joint probability defined in
(3).

The main steps of our motion synthesis are summarized in
Alg. 2. At any time t, we first use a dynamic programming
(DP) algorithm to estimate current sub-event type based on
our observations of the human agent (and the object if it ex-
ists) as well as the skeletons that we have synthesized so far.
Then we sample the new joint locations by maximizing the
spatial and motion potentials under current sub-event.

4.1 Dynamic Programming
We use the following DP algorithm to efficiently infer the
latent sub-events given the skeletons of two agents (and the
object trajectory if present) by maximizing the probability of
the parse graph defined in (1). For a sequence of interaction
c, we first define m(s′, t′, s, t) as the log probability of as-
signing sub-event type s to the time interval [t′, t] when the
preceding sub-event type is s′, which can be computed as

m(s′, t′, s, t) = log p({J t}t∈[t′,t]|Zs, s, c)
+ log p(t− t′ + 1|s, c) + log p(s|s′, c)

(14)
Then we define the highest log posterior probability for as-
signing type s to the last sub-event of {J t}t=1,··· ,t as b(s, t):

b(s, τ) = max
s′ 6=s,t′<t

{b(s′, t′) +m(s′, t′, s, t)} (15)

where b(s, 0) = 0. By recording all pairs of s′ and t′ that
maximize b(s, t) in (15), we can easily backtrace the optimal
latent sub-event parsing including labels s1, · · · , sK and cor-
responding intervals T1, · · · , TK , starting from the last frame
until the first frame in a reverse process.

5 Experiment
We collected a new RGB-D video dataset, i.e., UCLA
Human-Human-Object Interaction (HHOI) dataset, which
includes 3 types of human-human interactions, i.e., shake
hands, high-five, pull up, and 2 types of human-object-human
interactions, i.e., throw and catch, and hand over a cup. On
average, there are 23.6 instances per interaction performed
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Figure 4: Comparison between synthesized and GT skeletons. The red agent and the blue object are observed; the green agents are either GT
skeletons, synthesized skeletons by ours, or those by HMM respectively. The numbers are the frame indexes.

by totally 8 actors recorded from various views. Each inter-
action lasts 2-7 seconds presented at 10-15 fps. We used the
MS Kinect v2 sensor for the collection, and also took advan-
tage of its skeleton estimation. The objects are detected by
background subtraction on both RGB and depth images. The
dataset is available at: http://www.stat.ucla.edu/
˜tianmin.shu/SocialAffordance.

We split the instances by four folds for the training and
testing where the actor combinations in the testing set are dif-
ferent from the ones in the training set. For each interaction,
our training algorithm converges within 100 outer loop iter-
ations, which takes 3-5 hours to run on a PC with an 8-core
3.6 GHz CPU. Our motion synthesis can be ran at the average
speed of 5 fps with our unoptimized Matlab code.

Experiment 1: Our approach learns affordance representa-
tions from the training set, and uses the testing set to “syn-
thesize” the agent (i.e., robot) skeletons in reaction to the in-
teracting human skeletons (and an object). We first measured
the average joint distance between synthesized skeletons and
the ground truth (GT) skeletons since good synthesis should
not be very different from GT. A multi-level hidden Markov
model (HMM) is implemented as the baseline method, where
the four levels from top to bottom are: 1) the quantized dis-
tance between agents, 2) the quantized relative orientation
between agents, 3) the clustered status of the human skele-
ton and the object, and 4) the clustered status of the synthe-
sized skeleton. In addition, we also compare our full model
with a few variants: ours without joint selection and grouping
(V1), and ours without the latent sub-events (V2). Notice that
this social affordance based skeleton synthesis is a new prob-
lem and we are unaware of any exact prior state-of-the-art
approach.

The average joint distance for different methods are com-
pared in Table. 1. Our full model outperforms all other ap-
proaches by a large margin, which proves the advantage of
our hierarchical generative model with latent sub-events and
joint grouping. Note that the tracking error of Kinect 2 for a
joint ranges from 50 mm and 100 mm [Wang et al., 2015].
Figure 3 demonstrates a few joint selection and grouping re-
sults for some automatically discovered latent sub-events in
different interactions. We also visualize several synthesized
interactions in Figure 4, where the synthesized skeletons from
ours and the HMM baseline are compared with GT skeletons.

Experiment 2: In addition, we also conducted a user study
experiment of comparing the naturalness of our synthesized

Method Shake Hands Pull Up High-Five Throw & Catch Hand Over Average
HMM 0.362 0.344 0.284 0.189 0.229 0.2816

V1 0.061 0.144 0.079 0.091 0.074 0.0899
V2 0.066 0.231 0.090 0.109 0.070 0.1132

Ours 0.054 0.109 0.058 0.076 0.068 0.0730

Table 1: Average joint distance (in meters) between synthesized
skeletons and GT skeletons for each interaction.

Source Shake Hands Pull Up High-Five Throw & Catch Hand Over

Q1 Ours 4.60± 0.69 3.90± 0.70 4.53± 0.30 4.31± 0.89 4.40± 0.37
GT 4.50± 0.82 4.29± 0.58 4.64± 0.33 4.20± 0.76 4.64± 0.30

Q2 Ours 4.23± 0.34 2.80± 0.75 3.70± 0.47 4.06± 0.83 3.89± 0.38
GT 4.20± 0.47 4.23± 0.48 4.64± 0.17 3.86± 0.53 4.24± 0.46

Q3 Ours 4.23± 0.50 2.63± 0.60 3.57± 0.73 4.03± 0.88 3.69± 0.64
GT 4.30± 0.60 3.71± 1.15 4.40± 0.63 3.97± 0.74 4.40± 0.24

Table 2: The means and standard deviations of human ratings for the
three questions. The highlighted ratings indicate that the sequences
synthesized by ours have higher mean ratings than GT sequences.

skeleton vs. ground truths. Similar to [Meisner et al., 2009],
we asked 14 human subjects (undergraduate/graduate stu-
dents at UCLA) to rate the synthesized and GT interactions.
For this, we predefined 4 sets of videos, where there were
5 videos for each interaction in a set, and all these 5 videos
were either from GT or ours. Thus each set had a mixture of
videos of GT and ours, but GT and ours did not co-exist for
any interaction. Then we randomly assigned these 4 sets to
the subjects who were asked to watch each video in the given
set only once and rate it from 1 (worst) to 5 for three differ-
ent questions: “Is the purpose of the interaction successfully
achieved?” (Q1), “Is the synthesized agent behaving natu-
rally?” (Q2), and “Does the synthesized agent look like a hu-
man rather than a robot?” (Q3). The subjects were instructed
that the red skeleton was a real human and the green skele-
ton was synthesized in all videos. They were not aware of the
fact that GT and our synthesized sequences were mixed in the
stimuli.

Table 2 compares the mean and standard deviation of hu-
man ratings per interaction per question. Following [Walker
and Nowacki, 2011], we test the equivalence between the rat-
ings of ours and GT for each question using 90% confidence
interval. When the equivalence margin is 0.5, shake hands
and throw and catch pass the test for all three questions while
the rest interactions only pass the test for Q1. When we con-
sider the equivalence margin to be 1, only pull up does not
pass the equivalence test for Q2 and Q3. Overall, our mo-



tion synthesis is comparable to Kinect-based skeleton estima-
tion, especially for Q1, suggesting that we are able to learn
an appropriate social affordance representation. The lower
ratings for pull up mainly results from much noisier train-
ing sequences. Interestingly, the synthesized sequences of
shake hands and throw and catch have sightly higher ratings
than GT for Q1 and Q2. This is because our model learns
affordances from multiple training sequences, whereas GT is
based on a single and noisy Kinect measure. One distinguish-
able effect is hand touching, which is a critical pattern for
the human subjects to rate the videos according to their feed-
back after the experiment. In GT videos, especially shake
hands and throw and catch, the hand touching (either with
another agent’s hand or the ball) is not captured due to occlu-
sion, whereas our synthesized skeletons have notably better
performances since our method automatically groups the cor-
responding wrist joints (and the ball) together to learn their
spatial relations, as shown in Figure 4. This shows that our
approach is learning sub-goals of the interactions correctly
even with noisy Kinect skeletons.

For Q3, we also counted the frequencies of the high scores
(4 or 5) given to the five interactions: 0.87, 0.17, 0.53, 0.77,
0.63 for ours, and 0.88, 0.69, 0.84, 0.66, 0.84 for GT respec-
tively (ordered as in Table 2). This is similar to the Turing
test: we are measuring whether the subjects perceived the
agent as more human-like or more robot-like.

After synthesizing the skeleton sequence, applying the so-
cial affordances learned from human activities to the robot
replication is straightforward. Since we explicitly represent
the spatial and motion patterns of the base joint and the end
points of the limbs, we can match them to the corresponding
base position and end positions of limbs on a robot. Con-
sequently movement control of these key positions of a robot
can be achieved by moving them based on the synthesized tra-
jectories of their human joint counterparts to reach the desired
sub-goals. We will implement this on a real robotic system in
the future work.

6 Conclusion
In this paper, we discussed the new concept of social affor-
dance. We were able to confirm that our approach learns af-
fordance on human body-parts from human interactions, find-
ing important body joints involved in the interactions, discov-
ering latent sub-events, and learning their spatial and motion
patterns. We also confirmed that we are able to synthesize
future skeletons of agents by taking advantage of the learned
affordance representation, and that it obtains results compa-
rable to RGBD-based ground truth skeletons estimated from
Kinect.

One future work is to transfer our learned human motion
model to a robot motion model. In this paper, we focused
on the affordance “learning” part, and we took advantage of
it to synthesize skeleton motion sequences by assuming that
humans and robots share their body configurations and mo-
tion (i.e., a humanoid robot). However, in practice, robots
have different configurations and mechanical constraints than
humans. In order for the learned social affordance to be use-
ful for robots in general (e.g., non-humanoid robots), motion

transfer is needed as a future research challenge.
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